Noninvasive measurement of mean alveolar carbon dioxide tension and Bohr's dead space during tidal breathing.
نویسندگان
چکیده
The lack of methodology for measuring the alveolar carbon dioxide tension (PA,CO2) has forced investigators to make several assumptions, such as that PA,CO2 is equal to end-tidal (PET,CO2) and arterial CO2 tension (Pa,CO2). The present study measured the mean PA,CO2 and Bohr's dead space ratio (Bohr's dead space/tidal volume (VD,Bohr/VT)) during tidal breathing. The method used is a new, simple and noninvasive technique, based on the analysis of the expired CO2 volume per breath (VCO2) versus the exhaled VT. This curve was analysed in 21 normal, healthy subjects and 35 chronic obstructive pulmonary disease (COPD) patients breathing tidally through a mouthpiece apparatus in the sitting position. It is shown that: 1) PA,CO2 is similar to Pa,CO2 in normal subjects, whilst it is significantly lower than Pa,CO2 in COPD patients; 2) PA,CO2 is significantly higher than PET,CO2 in all subjects, especially in COPD patients; 3) VD,Bohr/VT is increased in COPD patients as compared to normal subjects; and 4) VD,Bohr/VT is lower than the "physiological" dead space ratio (VD,phys/VT) in COPD patients. It is concluded that the expired carbon dioxide versus tidal volume curve is a useful tool for research and clinical work, because it permits the noninvasive and accurate measurement of Bohr's dead space and mean alveolar carbon dioxide tension accurately during spontaneous breathing.
منابع مشابه
The Diagnostic Value of End-tidal Carbon Dioxide (EtCO2) and Alveolar Dead Space (AVDS) in Patients with Suspected Pulmonary Thrombo-embolism (PTE)
Introduction: Capnography, is an easy, fast and practical method which its application in the diagnosis of Pulmonary Thromboendarterectomy (PTE) has recently been studied. This study aimed to assess the diagnostic value of end-tidal CO2 (ETCO2) and the alveolar dead space (AVDS) in the diagnosis of patients suspected to PTE who have been referred to the emergency department. Materials and Metho...
متن کاملAlveolar partial pressures of carbon dioxide and oxygen measured by a helium washout technique.
A non-invasive technique was developed for measuring alveolar carbon dioxide and oxygen tension during tidal breathing. This was achieved by solving the Bohr equations for mean alveolar carbon dioxide and oxygen tensions (PACO2, PAO2) from known values of the dead-space:tidal volume ratio measured by helium washout, and from the mixed expired partial pressure of carbon dioxide and oxygen. The d...
متن کاملEstimating alveolar dead space from the arterial to end-tidal CO(2) gradient: a modeling analysis.
UNLABELLED Using an original, validated, high-fidelity model of pulmonary physiology, we compared the arterial to end-tidal CO(2) gradient divided by the arterial CO(2) tension (Pa-E'CO(2)/PaCO(2)) with alveolar dead space expressed as a fraction of alveolar tidal volume, calculated in the conventional manner using Fowler's technique and the Bohr equation: (VDalv/VTalv)(Bohr-Fowler). We examine...
متن کاملThe effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
BACKGROUND Passive humidifiers have gained acceptance in the intensive care unit because of their low cost, simple operation, and elimination of condensate from the breathing circuit. However, the additional dead space of these devices may adversely affect respiratory function in certain patients. This study evaluates the effects of passive humidifier dead space on respiratory function. METHO...
متن کاملPhysiologic Factors Influencing the Arterial-To-End-Tidal CO2 Difference and the Alveolar Dead Space Fraction in Spontaneously Breathing Anesthetised Horses
Citation: Mosing M, Böhm SH, Rasis A, Hoosgood G, Auer U, Tusman G, Bettschart-Wolfensberger R and Schramel JP (2018) Physiologic Factors Influencing the Arterial-ToEnd-Tidal CO2 Difference and the Alveolar Dead Space Fraction in Spontaneously Breathing Anesthetised Horses. Front. Vet. Sci. 5:58. doi: 10.3389/fvets.2018.00058 Physiologic Factors influencing the arterial-To-end-Tidal cO2 Differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European respiratory journal
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2001